Домой Программы Информация обрабатываемая компьютером кодируется. Кодирование информации на компьютере

Информация обрабатываемая компьютером кодируется. Кодирование информации на компьютере

Почти в каждом доме есть компьютер и даже не один, а несколько. Но мало кто понимает, как компьютер обрабатывает информацию и понимает нас. Если вы недавно закончили школу или еще учитесь, то на уроках информатики наверняка проходили эту тему, а вот более старшее поколение этого наверняка не знает и даже не задумывается о том, что «разговаривает» с компьютером на языке цифр в двоичной системе исчисления.

Вся цифровая информация передается в битах. Бит – это единица информации, которую понимает компьютер. Все, что мы делаем на компьютере переводится в специальный двоичный код , который состоит из 0 и 1. Если есть сигнал, то это 1, если сигнала нет, то это 0. Для компьютера это не числа, а сигналы. Есть сигнал, нет сигнала. Любую цифру компьютер понимает по своему – в двоичной системе.

0 — 0 (ноль)

1 — 1 (один)

2 — 10 (один-ноль) (одна единица второго разряда)

3 — 11 (один-один)

4 — 100 (один-ноль-ноль) (одна единица третьего разряда

5 — 101 (один-ноль-один)

6 — 110 (один-один-ноль)

7 — 111 (один-один-один)

8 — 1000 (один-ноль-ноль-ноль) (одна единица четвертого разряда)

9 — 1001 (один-ноль-ноль-один)

10 – 1010 (один-ноль-один-ноль)

Если вы хотите понять язык компьютера, необходимо изучить двоичную систему исчисления.

Нули и единицы в компьютере называют битами , а группы из восьми битов называют байтами .

В один байт можно записать число от 0 до 255.

В двух байтах можно записать число от 0 до 65535.

В трех байтах можно записать число от 0 до 16 миллионов.

Например,

число 2000 = 00000111 11010000

записывается в двух байтах, по 8 битов в каждом.

С числами более-менее понятно, а как же компьютер понимает текст?

Любые буквы компьютер переводит в числа. Превратив букву в число, компьютер превращает число в сигналы и записывает их, как и числа, — битами, из которых собираются байты:

А – 192 – 11000000

Б – 193 — 11000001

В – 194 – 11000010

Г – 195 — 11000011

Полная таблица кодов русского алфавита Ascii

Нажимая на клавишу клавиатуры вы даете компьютеру сигнал в двоичной системе исчисления, (каждой клавише соответствует свой код). Он понимает ее и при помощи специальной программы переводит этот сигнал в понятный для нас символ и выводит его на монитор. Грубо говоря, получается, что клавиатура служит переводчиком между нами и компьютером.

Тоже самое происходит и с графической информацией. Для того, чтобы сохранить картинку и работать с ней на компьютере, ее необходимо превратить в сигналы, т.е. оцифровать . Для этой цели можно воспользоваться или цифровым фотоаппаратом или видеокамерой.

Каждая точка имеет свой код:

Черная точка: 0, 0, 0;

Белая точка: 255, 255, 255;

Коричневая: 153, 102, 51;

И т. д. У каждого цвета – свой шифр (цветовой код).

Таблица
соответствия цветов их шестнадцатиричным
RGB-составляющим
.

Русское название

In English

Код / Сode

Белоснежный Snow

FFFAFA

Призрачно-белый Ghostwhite

F8F8FF

Белый-антик Antique White

FAEBD7

Кремовый Cream

FFFBF0

Персиковый Peachpuff

FFDAB9

Белый-навахо Navajo White

FFDEAD

Шелковый оттенок Cornsilk

FFF8DC

Слоновая кость Ivory

FFFFF0

Лимонный Lemon Chiffon

FFFACD

Морская раковина Seashell

FFF5EE

Медовый Honeydew

F0FFF0

Лазурный Azure

F0FFFF

Бледно-лиловый Lavender

E6E6FA

Голубой с красным отливом Lavender Blush

FFF0F5

Тускло-розовый Misty Rose

FFE4E1

Белый White (*)

FFFFFF

Черный Black (*)

000000

Тускло-серый Dim Gray

696969

Синевато-серый Slate Gray

708090

Грифельно-серый Light Slate Gray

778899

Серый Gray

BEBEBE

Светло-серый Light Gray

C0C0C0

Серый нейтральный Medium Gray

A0A0A4

Темно-серый Dark Gray

808080

Полуночно-синий Midnight Blue

191970

Темно-синий Navy (*), Dark Blue

000080

Васильковый Cornflower

6495ED

Грифельно-синий Slate Blue

6A5ACD

Светлый грифельно-синий Light Slate Blue

8470FF

Голубой королевский Royal Blue

4169E1

Синий Blue

0000FF

Небесно-голубой Sky Blue

87CEEB

Небесно-голубой светлый Light Sky Blue

87CEFA

Синий со стальным
оттенком
Steel Blue

4682B4

Голубой со стальным
оттенком
Light Steel Blue

B0C4DE

Светло-синий Light Blue

A6CAF0

Синий с пороховым
оттенком
Powder Blue

B0E0E6

Бледно-бирюзовый Pale Turquoise

AFEEEE

Бирюзовый Turquoise

40E0D0

Зеленовато-голубой Cyan (*)

00FFFF

Светлый циан Light Cyan

E0FFFF

Темный циан Dark Cyan

008080

Серо-синий Cadet Blue

5F9EA0

Аквамарин Aquamarine

7FFFD4

Цвет морской волны Seagreen

54FF9F

Цвет морской волны,
светлый
Light Seagreen

20B2AA

Бледно-зеленый Pale Green

98FB98

Весенне-зеленый Spring Green

00FF7F

Зеленая лужайка Lawn Green

7CFC00

Зеленый Green (*)

00FF00

Средне-зеленый Medium Green

C0DCC0

Темно-зеленый Dark Green

008000

Зеленовато-желтый Chartreuse

7FFF00

Зелено-желтый Green Yellow

ADFF2F

Лимонно-зеленый Lime Green

32CD32

Желто-зеленый Yellow Green

9ACD32

Зеленый лесной Forest Green

228B22

Хаки Forest Green

F0E68C

Бледно-золотистый Pale Goldenrod

EEE8AA

Светло-желтый золотистый Light Goldenrod Yellow

FAFAD2

Светло-желтый Light Yellow

FFFFE0

Желтый Yellow (*)

FFFF00

Темно-желтый Dark Yellow

808000

Золотой Gold

FFD700

Светло-золотистый Light Goldenrod

FFEC8B

Золотистый Goldenrod

DAA520

Желтоватый Burly Wood

DEB887

Розово-коричневый Rosy Brown

BC8F8F

Кожано-коричневый Saddle Brown

8B4513

Охра Sienna

A0522D

Бежевый Beige

F5F5DC

Пшеничный Wheat

F5DEB3

Рыжевато-коричневый Tan

D2B48C

Шоколадный Chocolate

D2691E

Кирпичный Firebrick

B22222

Коричневый Brown

A52A2A

Сомон Salmon

FA8072

Светлый сомон Light Salmon

FFA07A

Оранжевый Orange

FFA500

Коралловый Coral

FF7F50

Коралловый светлый Light Coral

F08080

Оранжево-красный Orange Red

FF4500

Красный Red (*)

FF0000

Темно-красный Dark Red

800000

Теплый розовый Hot Pink

FF69B4

Розовый Pink

FFC0CB

Светло-розовый Light Pink

FFB6C1

Красно-фиолетовый бледный Pale Violet Red

DB7093

Темно-бордовый Maroon (*)

B03060

Красно-фиолетовый Violet Red

D02090

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два символа (0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц - машинным языком.

Каждая цифра машинного двоичного кода несет количество информации равное одному биту.

Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда --4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др.

На основании одной ячейки информационной ёмкостью 1 бит можно закодировать только 2 различных состояния. Для того чтобы каждый символ, который можно ввести с клавиатуры в латинском регистре, получил свой уникальный двоичный код, требуется 7 бит. На основании последовательности из 7 бит, в соответствии с формулой Хартли, может быть получено N=2 7 =128 различных комбинаций из нулей и единиц, т.е. двоичных кодов. Поставив в соответствие каждому символу его двоичный код, мы получим кодировочную таблицу. Человек оперирует символами, компьютер – их двоичными кодами.

Для латинской раскладки клавиатуры такая кодировочная таблица одна на весь мир, поэтому текст, набранный с использованием латинской раскладки, будет адекватно отображен на любом компьютере. Эта таблица носит название ASCII (American Standard Code of Information Interchange) по-английски произносится [э́ски], по-русски произносится [а́ски]. Ниже приводится вся таблица ASCII, коды в которой указаны в десятичном виде. По ней можно определить, что когда вы вводите с клавиатуры, скажем, символ “*”, компьютер его воспринимает как код 42(10), в свою очередь 42(10)=101010(2) – это и есть двоичный код символа “*”. Коды с 0 по 31 в этой таблице не задействованы.

Таблица символов ASCII

Для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события):

К = 2 I = 2 8 = 256,

т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов.

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов.

Одному и тому же двоичному коду ставится в соответствие различные символы.

Двоичный код

Десятичный код

Впрочем, в большинстве случаев о перекодировке текстовых документов заботится не пользователь, а специальные программы - конверторы, которые встроены в приложения.

Начиная с 1997 г. последние версии Microsoft Office поддерживают новую кодировку. Она называется Unicode (Юникод). Unicode – это кодировочная таблица, в которой для кодирования каждого символа используется 2 байта, т.е. 16 бит. На основании такой таблицы может быть закодировано N=2 16 =65 536 символов.

Юникод включает практически все современные письменности, в том числе: арабскую, армянскую, бенгальскую, бирманскую, греческую, грузинскую, деванагари, иврит, кириллицу, коптскую, кхмерскую, латинскую, тамильскую, хангыль, хань (Китай, Япония, Корея), чероки, эфиопскую, японскую (катакана, хирагана, кандзи) и другие.

С академической целью добавлены многие исторические письменности, в том числе: древнегреческая, египетские иероглифы, клинопись, письменность майя, этрусский алфавит.

В Юникоде представлен широкий набор математических и музыкальных символов, а также пиктограмм.

Для символов кириллицы в Юникоде выделено два диапазона кодов:

Cyrillic (#0400 - #04FF)

Cyrillic Supplement (#0500 - #052F).

Но внедрение таблицы Unicode в чистом виде сдерживается по той причине, что если код одного символа будет занимать не один байт, а два байта, что для хранения текста понадобится вдвое больше дискового пространства, а для его передачи по каналам связи – вдвое больше времени.

Поэтому сейчас на практике больше распространено представление Юникода UTF-8 (Unicode Transformation Format). UTF-8 обеспечивает наилучшую совместимость с системами, использующими 8-битные символы. Текст, состоящий только из символов с номером меньше 128, при записи в UTF-8 превращается в обычный текст ASCII. Остальные символы Юникода изображаются последовательностями длиной от 2 до 4 байтов. В целом, так как самые распространенные в мире символы – символы латинского алфавита - в UTF-8 по-прежнему занимают 1 байт, такое кодирование экономичнее, чем чистый Юникод.

Чтобы определить числовой код символа можно или воспользоваться кодовой таблицей. Для этого в меню нужно выбрать пункт "Вставка" - "Символ", после чего на экране появляется диалоговая панель Символ. В диалоговом окне появляется таблица символов для выбранного шрифта. Символы в этой таблице располагаются построчно, последовательно слева направо, начиная с символа Пробел.

Кодирование текстовой информации в компьютере - порой неотъемлемое условие корректной работы устройства или отображения того или иного фрагмента. Как происходит этот процесс в ходе работы компьютера с текстом и визуальной информацией, звуком - все это мы разберем в данной статье.

Вступление

Электронная вычислительная машина (которую мы в повседневной жизни называем компьютером) воспринимает текст весьма специфично. Для нее кодирование текстовой информации очень важно, поскольку она воспринимает каждый текстовый фрагмент в качестве группы обособленных друг от друга символов.

Какие бывают символы?

В роли символов для компьютера выступают не только русские, английские и другие буквы, но и еще знаки препинания, а также другие знаки. Даже пробел, которым мы разделяем слова при печатании на компьютере, устройство воспринимает как символ. Чем-то очень напоминает высшую математику, ведь там, по мнению многих профессоров, ноль имеет двойное значение: он и является числом, и одновременно ничего не обозначает. Даже для философов вопрос пробела в тексте может стать актуальной проблемой. Шутка, конечно, но, как говорится, в каждой шутке есть доля правды.

Какая бывает информация?

Итак, для восприятия информации компьютеру необходимо запустить процессы обработки. А какая вообще бывает информация? Темой этой статьи является кодирование текстовой информации. Мы уделим особенное внимание этой задаче, но разберемся и с другими микротемами.

Информация может быть текстовой, числовой, звуковой, графической. Компьютер должен запустить процессы, обеспечивающие кодирование текстовой информации, чтобы вывести на экран то, что мы, например, печатаем на клавиатуре. Мы будем видеть символы и буквы, это понятно. А что же видит машина? Она воспринимает абсолютно всю информацию - и речь сейчас идет не только о тексте - в качестве определенной последовательности нулей и единиц. Они составляют основу так называемого двоичного кода. Соответственно, процесс, который преобразует поступающую на устройство информацию в понятную ему, имеет название “двоичное кодирование текстовой информации”.

Краткий принцип действия двоичного кода

Почему наибольшее распространение в электронных машинах получило именно кодирование информации двоичным кодом? Текстовой основой, которая кодируется при помощи нулей и единиц, может быть абсолютно любая последовательность символов и знаков. Однако это не единственное преимущество, которое имеет двоичное текстовое кодирование информации. Все дело в том, что принцип, на котором устроен такой способ кодирования, очень прост, но в то же время достаточно функционален. Когда есть электрический импульс, его маркируют (условно, конечно) единицей. Нет импульса - маркируют нулем. То есть текстовое кодирование информации базируется на принципе построения последовательности электрических импульсов. Логическая последовательность, составленная из символов двоичного кода, называется машинным языком. В то же время кодирование и обработка текстовой информации при помощи двоичного кода позволяют осуществлять операции за достаточно краткий промежуток времени.

Биты и байты

Цифра, воспринимаемая машиной, кроет в себе некоторое количество информации. Оно равно одному биту. Это касается каждой единицы и каждого нуля, которые составляют ту или иную последовательность зашифрованной информации.

Соответственно, количество информации в любом случае можно определить, просто зная количество символов в последовательности двоичного кода. Они будут численно равны между собой. 2 цифры в коде несут в себе информацию объемом в 2 бита, 10 цифр - 10 бит и так далее. Принцип определения информационного объема, который кроется в том или ином фрагменте двоичного кода, достаточно прост, как вы видите.

Кодирование текстовой информации в компьютере

Вот сейчас вы читаете статью, которая состоит из последовательности, как мы считаем, букв алфавита русского языка. А компьютер, как говорилось ранее, воспринимает всю информацию (и в данном случае тоже) в качестве последовательности не букв, а нулей и единиц, обозначающих отсутствие и наличие электрического импульса.

Все дело в том, что закодировать один символ, который мы видим на экране, можно при помощи условной единицы измерения, называемой байтом. Как написано выше, у двоичного кода есть так называемая информационная нагрузка. Напомним, что численно она равняется суммарному количеству нулей и единиц в выбранном фрагменте кода. Так вот, 8 бит составляют 1 байт. Комбинации сигналов при этом могут быть самыми разными, как это легко можно заметить, нарисовав на бумаге прямоугольник, состоящий из 8 ячеек равного размера.

Выходит, что закодировать текстовую информацию можно при помощи алфавита, имеющего мощность 256 символов. В чем заключается суть? Смысл кроется в том, что каждый символ будет обладать своим двоичным кодом. Комбинации, “привязываемые” к определенным символам, начинаются от 00000000 и заканчиваются 11111111. Если переходить от двоичной к десятичной системе счисления, то кодировать информацию в такой системе можно от 0 до 255.

Не стоит забывать о том, что сейчас есть различные таблицы, которые используют кодировку букв русского алфавита. Это, например, ISO и КОИ-8, Mac и CP в двух вариациях: 1251 и 866. Легко убедиться в том, что текст, закодированный в одной из таких таблиц, не отобразится корректно в отличной от данной кодировке. Это происходит из-за того, что в разных таблицах к одному и тому же двоичному коду соответствуют различные символы.

Поначалу это было проблемой. Однако в настоящее время в программах уже встроены специальные алгоритмы, которые конвертируют текст, приводя его к корректному виду. 1997 год ознаменовался созданием кодировки под названием Unicode. В ней каждый символ имеет в своем распоряжении сразу 2 байта. Это позволяет закодировать текст, имеющий гораздо большее количество символов. 256 и 65536: есть ведь разница?

Кодирование графики

Кодирование текстовой и графической информации имеет некоторые схожие моменты. Как известно, для вывода графической информации используется периферийное устройство компьютера под названием “монитор”. Графика сейчас (речь идет сейчас именно о компьютерной графике) широко используется в самых разных сферах. Благо, аппаратные возможности персональных компьютеров позволяют решать достаточно сложные графические задачи.

Обрабатывать видеоинформацию стало возможным в последние годы. Но текст при этом значительно “легче” графики, что, в принципе, понятно. Из-за этого конечный размер файлов графики необходимо увеличивать. Преодолеть подобные проблемы можно, зная суть, в которой представляется графическая информация.

Давайте для начала разберемся, на какие группы подразделяется данный вид информации. Во-первых, это растровая. Во-вторых, векторная.

Растровые изображения достаточно схожи с клетчатой бумагой. Каждая клетка на такой бумаге закрашивается тем или иным цветом. Такой принцип чем-то напоминает мозаику. То есть получается, что в растровой графике изображение разбивается на отдельные элементарные части. Их именуют пикселями. В переводе на русский язык пиксели обозначают “точки”. Логично, что пиксели упорядочены относительно строк. Графическая сетка состоит как раз из определенного количества пикселей. Ее также называют растром. Принимая во внимание эти два определения, можно сказать, что растровое изображение является не чем иным, как набором пикселей, которые отображаются на сетке прямоугольного типа.

Растр монитора и размер пикселя влияют на качество изображения. Оно будет тем выше, чем больше растр у монитора. Размеры растра - это разрешение экрана, о котором наверняка слышал каждый пользователь. Одной из наиболее важных характеристик, которые имеют экраны компьютера, является разрешающая способность, а не только разрешение. Оно показывает, сколько пикселей приходится на ту или иную единицу длины. Обычно разрешающая способность монитора измеряется в пикселях на дюйм. Чем больше пикселей будет приходиться на единицу длины, тем выше будет качество, поскольку “зернистость” при этом снижается.

Обработка звукового потока

Кодирование текстовой и звуковой информации, как и другие виды кодирования, имеет некоторые особенности. Речь сейчас пойдет о последнем процессе: кодировании звуковой информации.

Представление звукового потока (как и отдельного звука) может быть произведено при помощи двух способов.

Аналоговая форма представления звуковой информации

При этом величина может принимать действительно огромное количество различных значений. Причем эти самые значения не остаются постоянными: они очень быстро изменяются, и этот процесс непрерывен.

Дискретная форма представления звуковой информации

Если же говорить о дискретном способе, то в этом случае величина может принимать только ограниченное количество значений. При этом изменение происходит скачкообразно. Закодировать дискретно можно не только звуковую, но и графическую информацию. Что касается и аналоговой формы, кстати.

Аналоговая звуковая информация хранится на виниловых пластинках, например. А вот компакт-диск уже является дискретным способом представления информации звукового характера.

В самом начале мы говорили о том, что компьютер воспринимает всю информацию на машинном языке. Для этого информация кодируется в форме последовательности электрических импульсов - нулей и единиц. Кодирование звуковой информации не является исключением из этого правила. Чтобы обработать на компьютере звук, его для начала нужно превратить в ту самую последовательность. Только после этого над потоком или единичным звуком могут совершаться операции.

Когда происходит процесс кодирования, поток подвергается временной дискретизации. Звуковая волна непрерывна, она развивается на малые участки времени. Значение амплитуды при этом устанавливается для каждого определенного интервала отдельно.

Заключение

Итак, что же мы выяснили в ходе данной статьи? Во-первых, абсолютно вся информация, которая выводится на монитор компьютера, прежде чем там появиться, подвергается кодированию. Во-вторых, это кодирование заключается в переводе информации на машинный язык. В-третьих, машинный язык представляет собой не что иное, как последовательность электрических импульсов - нулей и единиц. В-четвертых, для кодирования различных символов существуют отдельные таблицы. И, в-пятых, представить графическую и звуковую информацию можно в аналоговом и дискретном виде. Вот, пожалуй, основные моменты, которые мы разобрали. Одной из дисциплин, изучающей данную область, является информатика. Кодирование текстовой информации и его основы объясняются еще в школе, поскольку ничего сложного в этом нет.

В мире идет постоянный обмен потоками информации. Источниками могут быть люди, технические устройства, различные вещи, объекты неживой и живой природы. Получать сведения может как один объект, так и несколько.

Для более качественного обмена данными одновременно осуществляется кодирование и обработка информации на стороне передатчика (подготовка данных и преобразование их в форму, удобную для трансляции, обработки и хранения), пересылка и декодирование на стороне приемника (преобразование кодированных данных в исходную форму). Это взаимосвязанные задачи: источник и приемник должны обладать сходными алгоритмами обработки сведений, иначе процесс кодирования-декодирования будет невозможен. Кодирование и обработка графической и мультимедийной информации обычно реализуются на основе вычислительной техники.

Кодирование информации на компьютере

Есть много способов обработки данных (тексты, числа, графика, видео, звук) с помощью компьютера. Вся информация, обрабатываемая компьютером, представлена в двоичном коде — с помощью цифр 1 и 0, называемых битами. Технически этот способ реализуется очень просто: 1 — электрический сигнал присутствует, 0 — отсутствует. С точки зрения человека, такие коды неудобны для восприятия — длинные строчки нулей и единиц, представляющие собой кодированные символы, очень сложно сходу расшифровать. Зато такой формат записи сразу наглядно показывает, что такое кодирование информации. Например, число 8 в двоичном восьмиразрядном виде выглядит как следующая последовательность бит: 000001000. Но то, что сложно человеку, просто компьютеру. Электронике проще обработать множество простых элементов, чем небольшое количество сложных.

Кодирование текстов

Когда мы нажимаем кнопку на клавиатуре, компьютер получает определенный код нажатой кнопки, ищет его в стандартной таблице символов ASCII (американский код для обмена информацией), «понимает» какая кнопка нажата и передает этот код для дальнейшей обработки (например, для отображения символа на мониторе). Для хранения символьного кода в двоичном виде используется 8 разрядов, поэтому максимальное число комбинаций равняется 256. Первые 128 символов используется под управляющие символы, цифры и латинские буквы. Вторая половина предназначается для национальных символов и псевдографики.

Кодирование текстов

Легче будет понять, что такое кодирование информации, на примере. Рассмотрим коды английского символа «С» и русской буквы «С». Заметим, что взяты символы заглавные, и их коды отличаются от строчных. Английский символ будет выглядеть как 01000010, а русский - 11010001. То, что для человека на экране монитора выглядит одинаково, компьютер воспринимает совершенно по-разному. Необходимо также обратить внимание на то, что коды первых 128 символов остаются неизменны, а начиная от 129 и далее одному двоичному коду могут соответствовать различные буквы в зависимости от используемой кодовой таблицы. К примеру, десятичный код 194 может соответствовать в КОИ8 букве «б», в СР1251 - «В», в ISO - «Т», а в кодировках СР866 и Мас вообще этому коду не соответствует ни один символ. Поэтому, когда при открытии текста мы вместо русских слов видим буквенную-символьную абракадабру, это означает, что такое кодирование информации нам не подходит и нужно выбрать другой конвертор символов.

Кодирование чисел

В двоичной системе исчисления берутся всего два варианта значения — 0 и 1. Все основные операции с двоичными числами использует наука под названием двоичная арифметика. Эти действия имеют свои особенности. Возьмем, к примеру, число 45, набранное на клавиатуре. Каждая цифра имеет свой восьмиразрядный код в кодовой таблице ASCII, поэтому число занимает два байта (16 бит): 5 - 01010011, 4 - 01000011 . Для того чтобы использовать это число в вычислениях, оно переводится по специальным алгоритмам в двоичную систему исчисления в виде восьмиразрядного двоичного числа: 45 - 00101101.

В 50-х годах на компьютерах, которые чаще всего использовались в научных и военных целях, впервые реализовали графическое отображение данных. Сегодня визуализация информации, получаемой от компьютера, является обычным и привычным для любого человека явлением, а в те времена это произвело необычайный переворот в работе с техникой. Возможно, сказалось влияние человеческой психики: наглядно представленная информация лучше усваивается и воспринимается. Большой рывок в развитии визуализации данных произошел в 80-х годах, когда кодирование и обработка графической информации получили мощное развитие.

Аналоговое и дискретное представление графики

Кодирование звука

Кодирование мультимедийной информации состоит в преобразовании аналоговой природы звука в дискретную для более удобной ее обработки. АЦП получает на входе измеряет его амплитуду в определенные промежутки времени и выдает на выходе цифровую последовательность с данными об изменениях амплитуды. Никаких физических преобразований не происходит.

Выходной сигнал является дискретным, поэтому, чем чаще частота измерения амплитуды (сэмпл), тем точнее выходной сигнал соответствует входному, тем лучше проходит кодирование и обработка мультимедийной информации. Сэмплом также принято называть упорядоченную последовательность цифровых данных, полученных через АЦП. Сам процесс при этом называется сэмплированием, по-русски — дискретизацией.


Обратное преобразование происходит при помощи ЦАП: на основании поступающих на вход цифровых данных в определенные моменты времени происходит генерация электрического сигнала необходимой амплитуды.

Параметры дискретизации

Основными параметрами сэплирования являются не только частота измерения, но и разрядность — точность измерения изменения амплитуды за каждый сэмпл. Чем точнее передается при оцифровке значение амплитуды сигнала в каждую единицу времени, тем выше качество сигнала после АЦП, тем выше достоверность восстановление волны при обратном преобразовании.

Одно из основных достоинств компьютера связано с тем, что это удивительно универсальная машина. Каждый, кто хоть когда-нибудь с ним сталкивался, знает, что занятие арифметическими подсчетами составляет совсем не главный метод использования компьютера. Компьютеры прекрасно воспроизводят музыку и видеофильмы, с их помощью можно организовывать речевые и видеоконференции в Интернет, создавать и обрабатывать графические изображения, а возможность использования компьютера в сфере компьютерных игр на первый взгляд выглядит совершенно несовместимой с образом суперарифмометра, перемалывающего сотни миллионов цифр в секунду.

Составляя информационную модель объекта или явления, мы должны договориться о том, как понимать те или иные обозначения. То есть договориться о виде представления информации.

Человек выражает свои мысли в виде предложений, составленных из слов. Они являются алфавитным представлением информации. Основу любого языка составляет алфавит - конечный набор различных знаков (символов) любой природы, из которых складывается сообщение.

Одна и та же запись может нести разную смысловую нагрузку. Например, набор цифр 251299 может обозначать: массу объекта; длину объекта; расстояние между объектами; номер телефона; запись даты 25 декабря 1999 года.

Для представления информации могут использоваться разные коды и, соответственно, надо знать определенные правила - законы записи этих кодов, т.е. уметь кодировать.

Код - набор условных обозначений для представления информации.

Кодирование - процесс представления информации в виде кода.

Для общения друг с другом мы используем код - русский язык. При разговоре этот код передается звуками, при письме - буквами. Водитель передает сигнал с помощью гудка или миганием фар. Вы встречаетесь с кодированием информации при переходе дороги в виде сигналов светофора. Таким образом, кодирование сводиться к использованию совокупности символов по строго определенным правилам.

Кодировать информацию можно различными способами: устно; письменно; жестами или сигналами любой другой природы.

Кодирование данных двоичным кодом.

По мере развития техники появлялись разные способы кодирования информации. Во второй половине XIXвека американский изобретатель Сэмюэль Морзе изобрел удивительный код, который служит человечеству до сих пор. Информация кодируется тремя символами: длинный сигнал (тире), короткий сигнал (точка), нет сигнала (пауза) - для разделения букв.

Своя система существует и в вычислительной технике - она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называютсядвоичными цифрами , по-английски -binary digit или сокращенноbit(бит).

Одним битом могут быть выражены два понятия: 0 или 1 (да илинет , черное илибелое , истина илиложь и т.п.). Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия:

Тремя битами можно закодировать восемь различных значений:

000 001 010 011 100 101 110 111

Увеличивая на единицу количество разрядов в системе двоичного кодирования, мы увеличиваем в два раза количество значений, которое может быть выражено в данной системе, то есть общая формула имеет вид:

где N- количество независимых кодируемых значений;

m - разрядность двоичного кодирования, принятая в данной системе.

Новое на сайте

>

Самое популярное